To remove header names from each row in a pandas dataframe, you can use the header=None
parameter when reading a csv file or any other data source into a dataframe. This will treat the first row of data as the actual data and not as the column names. Alternatively, you can use the header
parameter to specify which row contains the data you want to use as column names. You can also use the rename
function to rename columns with the header names.
How can I replace header names with column index numbers in pandas dataframe?
You can replace the header names with column index numbers in a pandas dataframe by accessing the columns attribute of the dataframe and resetting it with a list comprehension that contains the index values instead of the original header names. Here is an example code snippet to achieve this:
1 2 3 4 5 6 7 8 9 10 |
import pandas as pd # Create a sample dataframe data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) # Replace header names with column index numbers df.columns = [i for i in range(len(df.columns))] print(df) |
This will output:
1 2 3 4 |
0 1 2 0 1 4 7 1 2 5 8 2 3 6 9 |
In this output, the header names have been replaced with column index numbers (0, 1, 2).
What is the function to delete all rows with the same header names in pandas dataframe?
To delete all rows with the same header names in a pandas dataframe, you can use the drop_duplicates
function with the subset
parameter specifying the column names you want to consider for duplicates. Here's an example code snippet:
1 2 3 4 5 6 7 8 9 10 11 12 |
import pandas as pd # Create a sample dataframe data = {'A': [1, 1, 2, 3], 'B': [4, 4, 5, 6], 'C': [7, 7, 8, 9]} df = pd.DataFrame(data) # Delete rows with the same values in columns 'A' and 'B' df = df.drop_duplicates(subset=['A', 'B'], keep=False) print(df) |
In the above code, rows with the same values in columns 'A' and 'B' will be deleted from the dataframe. The keep=False
parameter ensures that all duplicate rows are removed.
How can I replace header names in pandas dataframe?
You can replace the header names in a pandas dataframe by assigning a list of new header names to the columns
attribute of the dataframe. Here's an example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
import pandas as pd # Create a sample dataframe data = {'A': [1, 2, 3], 'B': [4, 5, 6]} df = pd.DataFrame(data) # Display the original dataframe print("Original dataframe:") print(df) # Replace the header names df.columns = ['X', 'Y'] # Display the dataframe with replaced header names print("\nDataframe with replaced header names:") print(df) |
In this example, we first create a dataframe with two columns 'A' and 'B'. We then replace these header names with 'X' and 'Y' respectively using the columns
attribute. Finally, we display the dataframe with the replaced header names.